targeted drug delivery to hepatocarcinoma in vivo by phage-displayed specific binding peptide.

نویسندگان

  • Bing Du
  • Honghui Han
  • Ziqiang Wang
  • Lisha Kuang
  • Lei Wang
  • Liping Yu
  • Miao Wu
  • Zhongliang Zhou
  • Min Qian
چکیده

Hepatocellular carcinoma is one of the deadliest cancers in the world. In this study, a hepatocarcinoma-specific binding peptide, which could be used for drug delivery in targeting therapy, was obtained by in vivo phage display technology. After three rounds of panning, only the potential motif Pro-Ser was found in 80 sequenced phage clones. Phage A54 (sequence AGKGTPSLETTP) was shown to be the most effective and specific to the liver cancer cells by cell-based ELISA in all 130 tested clones. After phage A54 was injected i.v. into the xenograft-bearing mice for in vivo distribution, phage enrichment was found in tumor tissues compared with control phage C10 and normal liver tissues through phage titering and immunohistochemical staining. Next, the specific binding ability of synthesized peptide A54 was further confirmed by fluorescence microscopy, competition binding, and fluorescence-activated cell sorting assay. A54 and A54M (sequence AGKGTAALETTP) were synthesized and coupled to doxorubicin (DOX) to do the preliminary targeting therapy. After the treatment, the proliferation of liver cancer cells treated with A54-DOX was restrained significantly in vitro when compared with A54M-DOX-treated group. Reduction in tumor size and prolongation of long-term survival were also found in xenograft-bearing models compared with free DOX-treated group. In conclusion, the specific binding peptide A54, which was screened from phage display library, represents a promising approach for the development of novel target therapy strategies against hepatocellular carcinoma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of a Novel Tumor-Binding Peptide for Lung Cancer Through in-vitro Panning

Tumor-targeted therapies are playing growing roles in cancer research. The exploitation of these powerful therapeutic modalities largely depends on the discovery of tumor-targeting ligands. Phage display has proven a promising high throughput screening tool for the identification of novel specific peptides with high binding affinity to cancer cells. In the present study, we describe the use of ...

متن کامل

Identification of a Novel Tumor-Binding Peptide for Lung Cancer Through in-vitro Panning

Tumor-targeted therapies are playing growing roles in cancer research. The exploitation of these powerful therapeutic modalities largely depends on the discovery of tumor-targeting ligands. Phage display has proven a promising high throughput screening tool for the identification of novel specific peptides with high binding affinity to cancer cells. In the present study, we describe the use of ...

متن کامل

Peptide-mediated targeting to tumor blood vessels of lung cancer for drug delivery.

Antiangiogenesis therapies for the treatment of cancers hold the promise of high efficacy and low toxicity. In vivo phage display was used to identify peptides specifically targeting tumor blood vessels. The peptide SP5-52 recognized tumor neovasculature but not normal blood vessels in severe combined immunodeficiency mice bearing human tumors. Synthetic peptide was shown to inhibit the binding...

متن کامل

Tumor-targeted liposomal drug delivery mediated by a diseleno bond-stabilized cyclic peptide

Peptide ligands have played an important role in tumor-targeted drug delivery as targeting moieties. The in vivo fate of peptide-mediated drug delivery systems and the following antitumor effects may greatly depend on the stability of the peptide ligand. In the current study, a tumor-targeting cyclic peptide screened by phage display, Lyp-1 (a peptide that specifically binds to tumor and endoth...

متن کامل

Discovery of Novel Peptidomimetics for Brain-Derived Neurotrophic Factor using Phage Display Technology

Brain-Derived Neurotrophic Factor (BDNF) is a neuroprotectant candidate for neurodegenerative diseases. However, there are several clinical concerns about its therapeutic applications. In the current study, we selected BDNF-mimicking small peptides from phage-displayed peptide library as alternative molecules to the clinical challenges. The peptide library was screened against BDNF receptor (Ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer research : MCR

دوره 8 2  شماره 

صفحات  -

تاریخ انتشار 2010